Reg. No. :			
8			

Question Paper Code: 20472

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2022.

Fourth Semester

Electronics and Communication Engineering

EC 8453 — LINEAR INTEGRATED CIRCUITS

(Common to Biomedical Engineering/Medical Electronics/Robotics and Automation)

(Regulations 2017)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. List the ideal Characteristics of Op amp.
- 2. Define slew rate.
- 3. Compare precision rectifier with the conventional rectifier.
- 4. Why the output of comparator circuit is always $\pm V_{sat}$?
- 5. Give the applications of PLL.
- 6. What is the function of frequency synthesizer?
- 7. What are the disadvantages of weighted resistor type DAC?
- 8. For n bit ADC, how many clock cycle is required for its conversion when flash type and successive approximation ADC is used?
- 9. What is the need of an voltage regulator?
- 10. Write the Barkhausen criterion for oscillation.

PART B — $(5 \times 13 = 65 \text{ marks})$

11. (a) Explain the internal operation of an op amp using a block diagram.

Or

- (b) Elucidate the operation current mirror when used as a bias and as an active load.
- 12. (a) Draw the circuit diagram of Instrumentation of instrumentation amplifier and explain its operation. Also list out its application.

Or

- (b) (i) Design a differential amplifier to implement $V_0 = \frac{3}{4}(V_2 V_1)$. (8)
 - (ii) Design a positive clamper circuit using an op amp. (5)
- 13. (a) Explain the operation of PLL using a block diagram along with its operating ranges.

Or

- (b) Draw the circuit diagram of a gilbert multiplier cell and derive its differential output current.
- 14. (a) Design a flash type analog to digital converter with 4 bit as output and encode the 4bit into 2bit using priority encoder.

Or

- (b) Explain the working of a 3 bit non inverting R-2R ladder types DAC.
- 15. (a) Explain how 555 timer IC can be used as an astable multivibrator with a neat circuit diagram.

Or

(b) Design a voltage regulator to regulate 10V at the output using 1C723.

PART C —
$$(1 \times 15 = 15 \text{ marks})$$

16. (a) Design an analog computer to solve a second order differential equation given as $\frac{d^2y}{dt^2} + 5.4 \frac{dy}{dt} + 0.58y = u(t)$.

Where y is the output u(t) is the unit step input.

Or

(b) (i)

Fig. Q.16(b)(i)

Determine the output voltage V_o .

(8)

(ii)

Fig.Q.16(b)(ii)

If the input voltage V_1 is 2V, determine the current I_0 .

(7)